UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

٦

è

Mathematics B8: Mathematics For Physics And Astronomy

COURSE CODE	: MATHB008
UNIT VALUE	: 0.50
DATE	: 15-MAY-06
TIME	: 10.00
TIME ALLOWED	: 2 Hours

All questions may be attempted but only marks obtained on the best five solutions will count.

The use of an electronic calculator is **not** permitted in this examination.

- (a) Let U be a connected open set in ℝ² and f a function defined on U. State what it means to say that f is harmonic on U.
 Show that if f is equal to the real part of an analytic function f on U, then f is unique up to the addition of a constant.
 - (b) Let $U = \{(x, y) \in \mathbb{R}^2 : x > 0\}$. For each of the following functions f defined on U, find an analytic function \tilde{f} such that f is equal to the real part of \tilde{f} :
 - (i) $f(x, y) = \log(x^2 + y^2)$,
 - (ii) $f(x, y) = x \cos x \cosh y + y \sin x \sinh y$.
- 2. (a) State the Cauchy integral formula for an analytic function f defined on a simply connected domain U.

Let z_0 be a point in U and C a simple closed curve passing anti-clockwise around z_0 . Show that for every positive integer n, the function

$$g_n(z) = \int_C \frac{f(w)}{(w-z)^n} \, dw,$$

defined for points z inside C, is analytic with derivative $ng_{n+1}(z)$. Hence deduce that

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \int_C \frac{f(w)}{(w-z_0)^{n+1}} \, dw,$$

for all such n.

(b) Show that

$$\frac{1}{2\pi i}\oint_C \frac{e^{tz}}{z^{n+1}}\,dz = \frac{t^n}{n!},$$

where C is the unit circle $\{z : |z| = 1\}$.

PLEASE TURN OVER

MATHB008

- 3. (a) State and prove Taylor's theorem for an analytic function f defined on the domain U.
 - (b) Find the first three non-zero terms of the Taylor series of z cot z on the disk {z ∈ C : |z| < π} and state its radius of convergence. Hence, or otherwise, determine the first three non-zero terms of an expansion of f(z) = z⁻¹ cot (z⁻¹) on {z ∈ C : |z| > π⁻¹}.
- 4. (a) State the Residue theorem. By making the substitution $z = e^{i\theta}$, or otherwise, prove that

$$\int_0^{2\pi} \frac{d\theta}{2 + \cos\theta} = \frac{2\pi}{\sqrt{3}}.$$

(b) State Jordan's Lemma for a continuous function f defined on the upper half plane $\{z \in \mathbb{C} : \text{Im}(z) \ge 0\}$. Show that,

$$\int_{-\infty}^{\infty} \frac{\cos x}{x^2 + a^2} \, dx = \frac{\pi}{a} e^{-a},$$

where a is a positive real number.

5. The curve assumed by a uniform cable suspended between the points (-1,0) and (1,0) minimizes the potential energy defined by

$$\int_{-1}^{1} y \sqrt{1 + {y'}^2} \, dx,$$

subject to the constraint

$$\int_{-1}^{1} \sqrt{1 + {y'}^2} \, dx = 2L,$$

where L > 1. Show that $y - y_0 = k \cosh((x - x_0)/k)$ for constants x_0, y_0 and k. By applying the boundary conditions and considering the symmetries of the cosh function, or otherwise, show that $x_0 = 0$. Hence show that k satisfies

$$L = k \sinh\left(\frac{1}{k}\right).$$

MATHB008

CONTINUED

6. (a) Suppose that $f = f(x_1, \ldots, x_n)$ satisfies

$$f(\lambda x_1,\ldots,\lambda x_n)=\lambda^2 f(x_1,\ldots,x_n)$$

for all real numbers λ . Show that

$$\sum_{j=1}^{n} x_j \frac{\partial f}{\partial x_j} = 2f.$$

(b) The Euler-Lagrange equations for the functional $F = F(x, y_1, \ldots, y_n, y'_1, \ldots, y'_n)$, where y_1, \ldots, y_n are dependent variables, are

$$\frac{d}{dx}\left(\frac{\partial F}{\partial y'_j}\right) - \frac{\partial F}{\partial y_j} = 0,$$

where $j = 1, \ldots n$. Show that

$$\frac{d}{dx}\left(F-\sum_{j=1}^{n}y_{j}^{\prime}\frac{\partial F}{\partial y_{j}^{\prime}}\right)-\frac{\partial F}{\partial x}=0.$$

Let L = T - V be the Lagrangian of a particle moving under the action of a conservative force. Show that if $L = L(t, q_1, \ldots, q_n, \dot{q_1}, \ldots, \dot{q_n})$ satisfies

$$\frac{\partial L}{\partial t} = 0$$

then the total energy E = T + V is constant throughout the motion.

- 7. Let $(r(t), \theta(t))$ be polar coordinates for the position of a particle of mass m at time t acted on by a conservative force corresponding to the central potential V = V(r). Define the Lagrangian of the motion and show that
 - i) $h = r\dot{\theta}^2$ is constant,
 - ii) $m\ddot{r} mr\dot{\theta}^2 + \frac{\partial V}{\partial r} = 0.$

Suppose that $V(r) = -\frac{\gamma m}{r}$ for some constant γ . By writing $r = r(\theta)$ and eliminating the time dependency from ii), show that

$$-\frac{1}{r^2}\frac{\partial^2 r}{\partial\theta^2} + 2\frac{1}{r^3}\frac{\partial r}{\partial\theta} + \frac{1}{r} - \frac{\gamma}{h^2} = 0.$$

Hence deduce that if $u = \frac{1}{r}$, then

$$\frac{\partial^2 u}{\partial \theta^2} + u = \frac{\gamma}{h^2}.$$

Show that

$$r = \frac{h^2/\gamma}{1 + e\cos(\theta - \varphi)},$$

where e and φ are constants.

MATHB008

END OF PAPER